

IBM Software

Managing z/VM & Linux Performance Best Practices: Session 09469

Mike Sine, Advanced Technical Skills, Americas

sine@us.ibm.com

August 2011

SHARE 2011 Orlando

AGENDA

- Introduction
- Enterprise Management
- Monitoring Requirements
 - Virtual Linux and z/VM performance considerations
 - Don't forget the hardware
 - Integration from hardware systems applications Persistent historical views
- Operational Requirements
 - Centralized Control
 - Including all Enterprise Virtual Machines
- Integrating Monitoring and Operations
- Bringing it all together

Virtual Linux servers have unique challenges versus running on physical machines.

- z/VM System Programmers and Linux Administrators may not be in the same organization.
- We find that it is easy to over allocate resources; therefore, our monitoring examines resource usage of hardware, hypervisor, as well as the virtual machine. Realtime and historical metrics demonstrate peaks periods as well as average runtimes.
- Cross-platform virtualization increases these challenges

AGENDA

- Introduction
- Enterprise Management
- Monitoring Requirements
 - Virtual Linux and z/VM performance considerations
 - Don't forget the hardware
 - Integration from hardware systems applications Persistent historical views
- Operational Requirements
 - Centralized Control
 - Including all Enterprise Virtual Machines
- Integrating Monitoring and Operations
- Bringing it all together

Addressing the trend – zEnterprise will enable management of diverse resources across diverse platforms as a single Workload

- A Platform Workload is a grouping mechanism and "management view" of virtual servers supporting a business application
- Provides the context within which associated platform resources are presented, monitored, reported, and managed
- Management policies are associated to Platform Workload
 - Currently supports Performance Policy

Looking at managing the zEnterprise aka "systems of systems" getting yourself organized..

Visibility

See your Business

Control

Manage service risk and compliance

Automation

Optimize business service delivery

Manage different Hypervisors as Centralized resource.

Monitoring and Managing the Enterprise – zEnterprise will enable the management of Resources across

Virtual Servers

Manage resources across virtual servers to achieve workload goals

- Detect that a virtual server is part of Workload not achieving goals
- Determine that the virtual server performance can be improved with additional resources
- Project impact on all effected Workloads of moving resources to virtual server
- If good trade-off based on policy, redistribute resources
- Initially support CPU management

ITM and OMEGAMON scales to support zEnterprise

- ITM Infrastructure is shown separate to highlight components, however, each of these ITM components can reside on the zEnterprise.
- OMEGAMON agents can monitor z/OS system and subsystems, z/VM system and LPAR components, and Linux on z.
- ITM agents can monitor Linux on System z, Linux on System x, and AIX on Power7, and supported applications and databases.

Common Interface across the zEnterprise

The future is ensembles and multiple hypervisors

AGENDA

- Introduction
- Enterprise Management
- Monitoring Requirements
 - Virtual Linux and z/VM performance considerations
 - Don't forget the hardware
 - Integration from hardware systems applications Persistent historical views
- Operational Requirements
 - Centralized Control
 - Including all Enterprise Virtual Machines
- Integrating Monitoring and Operations
- Bringing it all together

OMEGAMON XE on z/VM and Linux agents with ITM example

An Integrated Monitoring Approach

- Provides performance monitoring for z/VM and Linux guests
- Executes automated actions in response to defined events or situations
- Integrates well across Enterprise for central control and trending:
 - Specifically focused on z/VM and Linux guests
 - Able to integrate z/VM and Linux into Enterprise Solution
 - Data warehousing for trend analysis

Workspaces to Manage z/VM and Linux

z/VM

- Processors
- SYSTEM Utilization, spinlocks
- Workload
 - Linux Appldata
 - Scaled & total CPU values
- LPAR Utilization
- PAGING and SPOOLING Utilization
- DASD
- Minidisk Cache
- Virtual Disks
- Channels
- CCW Translation
- REAL STORAGE Utilization
- NETWORK Utilization (Hiper Socket and Virtual Switch)
- TCPIP Utilization Server
- TCPIP Utilization Users
- Resource Constraint (Wait states)
- System Health

Linux

- Linux OS
- System Information
 - CPU aggregation
 - Virtual Memory Statistics
- Process
- Users
- Disk Usage
- File Information
- Network

Have I allocated enough Virtual CPUs to my guest?

- Do not define more virtual CPUs for a Linux guest than are needed.
 - The use of more than one processor requires software locks so that data or control blocks are not updated by more than one processor at a time.
 - Linux makes use of a global lock, and when that lock is held, if another processor requires that lock, it spins.
 - Set the number of virtual processors based on need and not simply match the number of real that are available.
 - Careful when cloning as some Linux guests require more Virtual CPUs (ex: Running Websphere, Oracle) than others.

Aggregate monitoring of Virtual CPUs

z/VM Processor Utilization

- Total Processor Utilization This is the processor utilization from the VM perspective and includes CP, VM System, and Virtual CPU time.
- System Time: This is the processor time used by the VM control program for system functions that are not directly related to any one virtual machine. This should be less than 10% of the total.
- CP Processor Time: This is the processor time used by the VM control program in support of individual virtual machines.
- Virtual Processor Time: (Emulation Time): This is processor time consumed by the virtual machine and the applications within it.
- Total to Virtual Ratio The ratio of total processor time to virtual processor time is often used as an indicator of z/VM efficiency or overhead. The closer to 1.0, the better the z/VM efficiency. RoT: Should explore causes of a ratio over 1.30.

System Processor Utilization Workspace

z/VM Workload Workspace

Spin Lock Wait

- Time Spinning on Locks Percent:
 - The percentage of time processors spend spinning on formal spin locks. RoT: Should be less than 10%.
 - Increases as number of logical processors increases.

Spinlock Workspace

Is my Linux guest sized correctly?

- In general, do not define the Linux virtual machine larger than you need.
 - Excessive virtual machine sizes negatively impact performance.
 - Linux uses any extra storage for caching of data. For shared resources, this is an impact.
 - Reduce the size of the Linux guest until it starts to swap (use VDISK for swap).
 - A good exercise is to compare Linux memory usage to z/VM working set size for the guest.

Need breakdown of memory use

Working Set Size

Page/Swap Attributes

VDISK

What is it?

- FBA (Fixed Block Architecture disk) device emulated in-memory
 - Translation: Very fast "device".
- High performance paging device for Linux on z.
- Memory is allocated by CP from the Dynamic Paging Area
- Allocated only when referenced
 - Allocating a 10 MB device does NOT instantly consume 10 MB of pages.
 - Pages are allocated when needed.
- Not recommended in a storage-constrained z/VM system.

VDISK Workspace

Memory Configuration

- Plan on a virtual to real (V:R) memory ratio in the range of 1.5:1 to 3:1.
- Recommend configuring some processor memory as expanded storage:
 - Serves as high speed cache.
 - Increases consistency of response time.
 - See http://www.vm.ibm.com/perf/tips/storconf.html for the gory details.
- Rule of Thumb start with 25% of memory configured as expanded:
 - Typically 2–4GB of expanded storage is sufficient, 1GB minimum.
 - The lower the paging rate, the lower the amount of expanded storage required.
 - The greater the number of page frames available in central storage above 2GB, the higher the amount of expanded storage required.

28

OMEGAMON Memory Configuration

Paging Subsystem

- Plan for DASD page space utilization < 50%:</p>
 - Page space tends to get fragmented over time.
 - Large contiguous free space allows for greater paging efficiency.
 - Monitor usage with OMEGAMON XE or Q ALLOC PAGE command.
- Do not mix page space with any other space on a volume.
- Recommend using devices of the same size/geometry.
- Calculation guidelines are located in the CP Planning and Administration Manual.

OMEGAMON CP Owned Devices - Paging Subsystem

z/VM Page Attributes

Minidisk Cache

- z/VM minidisk cache is a write-through cache:
 - Improves read I/O performance.
 - But it's not free.
- Not recommended for:
 - Memory constrained systems.
 - Linux swap file disks.
 - Flashcopy targets (see next chart)
- Default system settings are less than optimal.
- Recommended settings:
 - Eliminate MDC in expanded storage.
 - SET MDC XSTORE 0M 0M
 - Limit MDC in central storage 10% is a good starting point.
 - SET MDC STORE 0M 256M
 - Monitor with product like OMEGAMON XE and/or the Q MDC command.

MDC and FlashCopy Interaction

- FlashCopy requests require z/VM to flush MDC for the entire minidisk.
- MDC Flush processing is very expensive even when there is no data in MDC to flush
 - System Time becomes very high.
- z/OS DFSMS and other utilities can make extensive use of FlashCopy for functions such as defragmentation
- Mitigations
 - Turn off MDC for minidisks that are FlashCopy targets

OMEGAMON MDISK Cache Allocations

OMEGAMON MDISK Cache Allocations – p. 2

Direct Access Storage Devices (DASD)

- Avg Pending Time for DASD
 - Average pending time for real DASD I/Os. RoT: Should be less than 1 millisecond.
- Items worth keeping an eye on:
 - Number of I/O's per Second, Percent Busy
 - Avg Service Time Average service time for real DASD devices (sum of the pending, connect, and disconnect times).
 - DASD I/O Rate Rate of traditional real I/Os per second to real DASD devices. Worth monitoring.

DASD I/O Workspace

System Dump & Spool Space

Dump Space

- Ensure there is sufficient dump space defined to the system.
- Dump space requirements vary according to memory usage.
 - Q DUMP identifies allocated dump space.
 - Calculation guidelines are located in CP Planning and Administration Manual.

Spool Space

- Various uses:
 - User printer, punch, reader files (console logs)
 - DCSS, NSS
 - System files
 - Page space overflow
- Spool Management:
 - Monitor with Q ALLOC SPOOL command.
 - SFPURGER utility:
 - Rule based tool to clean up spool space.
 - Included in the no charge CMS Utilities Feature (CUF).

VMDUMP Processing Concern

- VMDUMP is a very helpful command for problem determination.
- Some weaknesses:
 - Does not scale well, can take up to 40 minutes per GB.
 - It is not interruptible
 - APAR VM64548 is open to address this.
- Linux provides a disk dump utility which is much faster relative to VMDUMP.
 - It is disruptive
 - Does not include segments outside the normal virtual machine.
- See http://www.vm.ibm.com/perf/tips/vmdump.html

System Dump & Spool Space

Tips—Overall Health of Your System

At a quick glance you can see the %CPU usage, what your overcommit ratio is, the number of users in a wait state, and paging rates of all your z/VM systems

V4.1.2 IF 1: Resource Constraint Analysis (Waits)

Do not ignore the hardware!

- Just because Linux resources are virtual, do not ignore the hardware!
 - Hardware is another potential layer of shared resources.
 - LPAR weight, CPU sharing, LPAR load, and other attributes need to be monitored for overall system performance.
 - The measurement should include the entire CEC and not just the LPAR hosting z/VM.

Processors

Logical Processors

- LPAR recommendation no greater than a 4:1 logical to real ratio.
- z/VM 5.1 z/VM 5.2 support up to 24 processors.
- z/VM 5.3 z/VM 6.1 support up to 32 processors.

LPAR Utilization Workspace

Processor by LPAR name workspace

Persistent Historical Views

This makes it easier to see anomalies, or match spikes. Capturing performance data as a base line is a must:

- General history data business as usual.
- Detailed raw monitor data prior to and following any major changes.
- Ability to review attributes of a past incident.

Persistent Historical Views

Persistent Historical Views

New Tivoli Common Reporting (TCR)

- TCR reports available on the OPAL website
 - http://www-18.lotus.com/wps/portal/topal

What is TCR?

- Tivoli Common Reporting.
- Consistent approach to viewing and administering reports.
- Built on top of open source reporting tool called: BIRT.
- Flexible development environment (Eclipse based) for creating report definitions.
- Five templates provided for download.
- Taking suggestions for more

Sample Reports Available

- z/VM VM System CPU Utilization
- z/VM VM System Paging Utilization
- z/VM Linux System CPU Utilization
- z/VM VM System CP-Owned Device Utilization
- z/VM VM System TCP Server Statistics

Tivoli

IBM.

November 30, 2007 2:26:24 PM EST

1 / 18

Tivoli

IBM.

System = TIVMVS6					
LPAR Name	LPAR Busy	LPAR Load	LPAR Suspend Time	LPAR Overhead Time	Date/Time
RALNS31	100	4.2	0	.6	Nov 29, 2007 4: PM
RALNS32	100	4.2	0	.6	Nov 29, 2007 4: PM
RALNS61	100	4.2	0	.6	Nov 29, 2007 4: PM
TIVMVS1	100	2.09	0	.6	Nov 29, 2007 4: PM
TIVMVS10	100	2.09	0	.6	Nov 29, 2007 4: PM
RALNS31	100	4.2	0	.6	Nov 29, 2007 4: PM
RALNS32	100	4.2	0	.6	Nov 29, 2007 4: PM
RALNS61	100	4.2	0	.6	Nov 29, 2007 4: PM
TIVMVS1	100	2.09	0	.6	Nov 29, 2007 4: PM
TIVMVS10	100	2.09	0	.6	Nov 29, 2007 4: PM
RALNS31	100	4.2	0	.6	Nov 29, 2007 4: PM
RALNS32	100	4.2	0	.6	Nov 29, 2007 4: PM
RALNS61	100	4.2	0	.6	Nov 29, 2007 4: PM
TIVMVS1	100	2.09	0	.6	Nov 29, 2007 4: PM
TIVMVS10	100	2.09	0	.6	Nov 29, 2007 4: PM
RALNS31	100	4.2	0	.6	Nov 29, 2007 4: PM
RALNS61	100	4.2	0	.6	Nov 29, 2007 4: PM
TIVMVS1	100	2.09	0	.6	Nov 29, 2007 4: PM
TIVMVS10	100	2.09	0	.6	Nov 29, 2007 4: PM
RALNS32	99.8	4.2	0	.6	Nov 29, 2007 4: PM
RALNS31	100	4.2	0	.6	Nov 29, 2007 4: PM
RALNS32	100	4.2	0	.6	Nov 29, 2007 4: PM
TIVMVS1	100	2.09	0	.6	Nov 29, 2007 4: PM
TIVMVS10	100	2.09	0	.6	Nov 29, 2007 4:

November 30, 2007 2:26:51 PM EST

2 / 18

AGENDA

- Introduction
- Enterprise Management
- Monitoring Requirements
 - Virtual Linux and z/VM performance considerations
 - Don't forget the hardware
 - Integration from hardware systems applications Persistent historical views
- Operational Requirements
 - Centralized Control
 - Including all Enterprise Virtual Machines
- Integrating Monitoring and Operations
- Bringing it all together

Operations Manager for z/VM

Increase productivity

- Authorized users view and interact with monitored virtual machines without logging onto them
- Multiple users view/interact with a virtual machine simultaneously

Improve system availability

- > Monitor virtual machines and processes
- > Take automated actions based on console messages
- > Reduce problems due to operator error

Automation

- Routine activities done more effectively with minimal operations staff
- > Schedule tasks to occur on a regular basis

Integration

Fulfill take action requests from OMEGAMON XE on z/VM and Linux

Features and Functions

- Monitor service machine consoles
- Monitor spool usage
- Monitor system events
- View and interact with monitored consoles from authorized user IDs
- Find and view spool files
- Schedule events/actions
- Dynamic configuration
- Separation of access control

Enterprise level console/syslog management:

Monitor Service Machines

Define rules to

- Scan console messages for text matching
 - Includes column, wildcard, and exclusion support
 - Optionally restrict to specific user ID(s)
- Take actions based on matches

Multiple rules can apply to one message

- Rules processed in order of definition in the configuration file
- FINAL option available to indicate no additional rules should be evaluated

View and Interact with Consoles

Authorized users can view live consoles of monitored service machines and guests

- Multiple users can view the same console simultaneously
- No need to logon to the service machine to see its console
- Test data and Linux syslog data treated as a "console"
- Views can be defined to look at a group of consoles in one view

Full screen mode

- Scroll up and down to view and search historical data
- Auto scroll (on or off) as new output is displayed on the console
- From command line, issue commands back to the monitored console
- Amount of data that is visible depends on specified or default data space size
- Rules/actions may modify the view
 - Suppress messages from the console
 - Hold or highlight messages with color, blinking, etc.

Authorized users can view the log file

Can also request a copy of the log file from today or a previous day

Monitor and View Spool Files

- Create spool monitors to trigger actions when
 - Percent of spool usage falls within a specified range
 - Percent of spool usage increases at a specified rate
- Actions triggered can be the same actions used by console monitoring
- Authorized users can
 - Display a list of spool files based on one or more attributes
 - Owner
 - Size
 - Date created
 - From the list the user can
 - View the contents of an individual spool file
 - Transfer, change, or purge a spool file

Schedule Events and Actions

Define schedules

- Hourly, daily, weekly, monthly, or yearly, nth weekday of the month
- Once on specified month, day, year, and time
- At regular intervals
 - Every x hours and y minutes
- Within a specified window of time
 - Specify start time
 - Specify conflicting schedules
 - Specify maximum time to defer this schedule
- Within limits
 - Restrict to specific days of the week: Monday through Sunday plus holidays
 - Restrict to certain hours of the day

Specify the action associated with the schedule

Actions specified are the same as those for console and spool monitoring

Respond to System Events

- Create monitors for z/VM system events (*VMEVENT) related to user IDs
 - Logon
 - Logoff
 - Failure condition (typically CP READ)
 - Logoff timeout started
 - Forced sleep started
 - Runnable state entered (VM READ)
 - Free storage limit exceeded
- Optionally restrict to specific user ID(s)
- Specify the action associated with the event
 - Actions specified are the same as those for schedules and console and spool monitors

Dynamic Configuration

- Initial configuration file loaded at startup
 - May imbed other configuration files
- Most configuration options can be updated while Operations Manager is running
 - Add, delete, or change:
 - Rules, actions, monitors, schedules, holidays, groups, user authorization
 - Suspend or resume rules, monitors, schedules
- Multiple methods
 - GOMCMD command interface
 - Load a new or updated configuration file
 - Commands in DEFACTN statements

Operations Manager

Summary

Use Operations Manager to

- Automate daily operations
- Prevent problems rather than react to them
- Automate reactions to problems when they can't be prevented
- Improve problem determination procedures
- Increase programmer and operator productivity

AGENDA

- Introduction
- Enterprise Management
- Monitoring Requirements
 - Virtual Linux and z/VM performance considerations
 - Don't forget the hardware
 - Integration from hardware systems applications Persistent historical views
- Operational Requirements
 - Centralized Control
 - Including all Enterprise Virtual Machines
- Integrating Monitoring and Operations
- Bringing it all together

Bring it all together

It is often that a unit of work is serviced by multiple applications and databases across multiple operating systems, including z/VM and Linux. Integrated views allow:

- Unit of work, or application tracking
- Business views
- Single skill sets to monitor dissimilar hardware, operating system, and application environments.

Application View: Scaling Scenario

- WebSphere MQ on Linux for System z receives "order requests" in the form of Queue messages, and places them on a queue.
- A WebSphere Application Server is invoked to periodically check the queue for messages and process them to a DB2 on z/OS database.
- The orders are coming too fast for the Websphere application to process.
- A second Linux server is started with another copy of Websphere application server to aid in the processing of requests.

Application View: Scaling Scenario

- Trigger: Queue Depth
- Options for triggering actions can be based on things such as:
 - The number of orders received but not yet processed (the number of messages on the queue)
 - The amount of time it is taking to process the orders
 - The response time of the web application
 - The CPU usage of the z/VM Guest
 - Other things I haven't given much thought to yet.

MQ Series Queue growth started

Scaling Scenario

Adjusting Resources for a Linux Guest

- Virtual CPU consumption is high for a Linux guest
- Detect the alert
 - Automation receives the message
- Action is triggered by a rule in Operations Manager
- Operations Manager issues CP commands to tune the guest
 - SET QUICKDSP
 - SET SHARE
- Ability to monitor the output is key

Adjusting resources for a Linux guest

OMEGAMON Configuration

- Define a situation (alert) to detect high CPU consumption for Linux virtual machines.
- Define the automated "Take Action" to:
 - Direct a message to console monitored by Operations Manager.
 - Include in the message keywords to trigger Operations Manager rule.
 - Guest Name
 - Guest need CPU priority text
 - Any unique data desired for specific customer environment.

Hindi

Traditional Chinese

감사합니다

Korean

Спасибо

Russian

Spanish

Grazie

Italian

Danke

Merci

French

ありがとうございました

Japanese

